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Abstract. We propose a directed hypergraph model and a refinement
heuristic to distribute communicating tasks among the processing units
in a distributed memory setting. The aim is to achieve load balance
and minimize the maximum data sent by a processing unit. We also
take two other communication metrics into account with a tie-breaking
scheme. With this approach, task distributions causing an excessive use
of network or a bottleneck processor which participates to almost all of
the communication are avoided. We show on a large number of problem
instances that our model improves the maximum data sent by a processor
up to 34% for parallel environments with 4, 16, 64 and 256 processing
units compared to the state of the art which only minimizes the total
communication volume.

Keywords: Hypergraph partitioning, multi-level partitioning, commu-
nication minimization.

1 Introduction

In parallel computing, the problem of distributing communicating tasks among
the available processing units is important. To solve this problem, several graph
and hypergraph models are proposed [8,9,11,17,26]. These models transform the
problem at hand to a balanced partitioning problem. The balance restriction on
part weights in conventional partitioning corresponds to the load balance in the
parallel environment, and the minimized objective function corresponds to the
total communication volume between processing units. Both criteria are crucial
in practice for obtaining short execution times, using less power, and utilizing
the computation and communication resources better.

In addition to the total data transfer, there are other communication metrics
investigated before, e.g., total number of messages sent [25], or maximum volume
of messages sent and/or received by a processor [4,25]. Even with perfect load
balancing and minimized total data transfer, there can be a bottleneck processing
unit which participates to most of the data transfers. This can create a problem



especially for data intensive applications for which reducing the amount of data
transferred by the bottleneck processing unit can improve the total execution
time significantly.

In this work, given a task graph, our main objective is distributing its tasks
evenly and minimizing the maximum amount of data sent by a processing unit.
Previous studies addressing different communication cost metrics (such as [4,25])
work in two phases. In the first phase, the total volume of communication is
reduced, and in the second phase the other metrics are addressed. We propose a
directed hypergraph model and partition the related hypergraph with a multi-
level approach and a novel K-way refinement heuristic. While minimizing the
primary objective function, our refinement heuristic also takes the maximum
data sent and received by a processing unit and the total amount of data transfer
into account by employing a tie-breaking scheme. Therefore, our approach is
different from the existing studies in that the objective functions are minimized
all at the same time.

The organization of the paper is as follows. In Section 2, the background ma-
terial on graph and hypergraph partitioning is given. Section 2.3 shows the differ-
ences of the graph and hypergraph models and describes the proposed directed
hypergraph model. In Section 3, we present our multi-level, multi-objective par-
titioning tool UMPa (pronounced as “Oompa”). Section 4 presents the experi-
mental results, and Section 5 concludes the paper.

2 Background

2.1 Hypergraph partitioning

A hypergraph H = (V,N ) is defined as a set of vertices V and a set of nets
(hyperedges) N among those vertices. A net n ∈ N is a subset of vertices and
the vertices in n are called its pins. The number of pins of a net is called the size
of it, and the degree of a vertex is equal to the number of nets it is connected
to. In this paper, we will use pins[n] and nets[v] to represent the pin set of a
net n and the set of nets vertex v is connected to, respectively. Vertices can
be associated with weights, denoted with w[·], and nets can be associated with
costs, denoted with c[·].

A K-way partition of a hypergraph H is denoted as Π = {V1,V2, . . . ,VK}
where

– parts are pairwise disjoint, i.e., Vk ∩ V` = ∅ for all 1 ≤ k < ` ≤ K,
– each part Vk is a nonempty subset of V, i.e., Vk ⊆ V and Vk 6= ∅ for 1 ≤ k ≤

K,
– union of K parts is equal to V, i.e.,

⋃K
k=1 Vk =V.

Let Wk denote the total vertex weight in Vk (i.e., Wk =
∑

v∈Vk
w[v]) and Wavg

denote the weight of each part when the total vertex weight is equally distributed
(i.e., Wavg =(

∑
v∈V w[v])/K). If each part Vk ∈ Π satisfies the balance criterion

Wk ≤ Wavg(1 + ε), for k = 1, 2, . . . ,K (1)
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we say that Π is ε-balanced where ε represents the maximum allowed imbalance
ratio.

For a K-way partition Π, a net that has at least one pin (vertex) in a part
is said to connect that part. The number of parts connected by a net n, i.e.,
connectivity , is denoted as λn. A net n is said to be uncut (internal) if it connects
exactly one part (i.e., λn = 1), and cut (external), otherwise (i.e., λn > 1).

The set of external nets of a partition Π is denoted as NE . There are var-
ious cutsize definitions [22] for hypergraph partitioning. The one that will be
used in this work, which is shown to accurately model the total communication
volume [9], is called the connectivity metric and defined as:

χ(Π) =
∑
n∈N

c[n](λn − 1) . (2)

In this metric, each cut net n contributes c[n](λn − 1) to the cutsize. The hy-
pergraph partitioning problem can be defined as the task of finding a balanced
partition Π with K parts such that χ(Π) is minimized. This problem is also
NP-hard [22].

2.2 Recursive bisection and multi-level framework

Arguably, the multi-level approach [3] is the most successful heuristic for the hy-
pergraph partitioning problem. Although, it has been first proposed for recursive-
bisection based graph partitioning, it also works well for hypergraphs [2,7,9,18,23].
In the multi-level approach, a given hypergraph is coarsened to a much smaller
one, a partition is obtained on the the smallest hypergraph, and that parti-
tion is projected to the original hypergraph. These three phases will be called
the coarsening, initial partitioning, and uncoarsening phases, respectively. The
coarsening and uncoarsening phases have multiple levels. In a coarsening level,
similar vertices are merged to make the hypergraph smaller. In the correspond-
ing uncoarsening level, the merged vertices are split, and the partition of the
coarser hypergraph is refined for the finer one.

Most of the multi-level partitioning tools used in practice are based on recur-
sive bisection. In recursive bisection, the multi-level approach is used to partition
a given hypergraph into two. Each of these parts is further partitioned into two
recursively until K parts are obtained in total. Hence, to partition a hypergraph
into K = 2k, the recursive bisection approach uses K − 1 coarsening, initial
partitioning, and uncoarsening phases.

Several successful clustering heuristics are proposed to coarsen a hypergraph.
Although their similarity metrics aim to reduce the cutsize, they cannot find an
optimal solution, since the problem is NP-hard. Hence, an optimal partition of
the coarser hypergraph may not be optimal for the finer one. To obtain better
partitions, iterative-improvement-based heuristics are used to refine the coarser’s
partition after projecting it to finer. In practice, Kernighan-Lin (KL) [21] and
Fiduccia-Mattheyses (FM) [14] based refinement heuristics which depend on
vertex swaps and moves between two parts are used.
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2.3 Task graph and communication volume metrics

Let A = (T , C) be a task graph where T is the set of tasks to be executed,
and C is the set of communications between pairs of tasks. We assume that the
execution time of each task may differ, hence each task t ∈ T is associated with
an execution time exec(t). Each task ti ∈ T sends a different amount of data
data(ti) to each tj such that titj ∈ C. The communications between tasks may
be uni-directional, That is titj ∈ C does not imply tjti ∈ C. In our parallel
setting, we assume owner computes rule and hence, each task of A is executed
by the processing unit to which it is assigned. Let Ti be the set of tasks assigned
to processing unit Pi. Since it is desirable to distribute the tasks evenly, the
computational load

∑
t∈Ti

exec(t) should be almost the same for each Pi. In
addition to that two heavily communicating tasks should be assigned to the
same processing unit since less data transfer over the network is needed in this
case. The total amount of data transfer throughout the execution of the tasks
is called the total communication volume (totV ). Note that when a task t ∈ Ti

needs to send data to a set of tasks in Tj , the contribution to totV is data(t),
since it is enough to send t’s data to Pj only once.

Although minimizing the total communication volume is important, it is
sometimes preferable to reduce other communication metrics [17]. For exam-
ple, in the context of one-dimensional partitioning of structurally unsymmetric
sparse matrices for parallel matrix-vector multiplies, Uçar and Aykanat used a
communication hypergraph model to reduce the maximum of number of mes-
sages and the maximum amount of data sent and received by a processor [25]
(see also [4] and [24] for other communication metrics).

Let SV [i] and RV [i] be the volumes of communication sent and received
by Pi, respectively. Hence, the total communication volume equals to totV =∑

i SV[i] =
∑

i RV[i]. In addition to totV , we are interested in two other commu-
nication metrics: maximum send volume (maxSV ), which equals to maxi (SV[i]);
and maximum send-receive volume (maxSRV ), which is maxi (SV[i] + RV[i]).

3 UMPa: A multi-objective partitioning tool for
communication minimization

3.1 Directed hypergraph model

We propose modeling the task graphs with directed hypergraphs. Given a task
graph A, we construct the directed hypergraph model H = (V,N ) as fol-
lows. For each task ti ∈ T , we have a corresponding vertex vi ∈ V and a
net ni ∈ N where pins[ni] = {vi} ∪ {vj | titj ∈ C}, w[vi] = exec(ti), and
c[ni] = data(ti). In this directed hypergraph model, the communication repre-
sented by a net n is flowing from its source vertex, which will be denoted as s(n),
to the target vertices pins[n] \ {s(n)}. Given a partition Π, let δ(n,Vi) = 1 if
n ∩ Vi 6= ∅, and 0, otherwise. Then the data sent and received by Pi are equal
to SV[i] =

∑
n,s(n)∈Vi

c[n](λn − 1) and RV[i] =
∑

n,s(n)/∈Vi
c[n]δ(n,Vi), respec-

tively. Our primary objective is to minimize maxSV , the maximum send volume.
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While doing this, we also take the maximum send-receive volume and the total
communication volume into account. The total volume of communication cor-
responds to the cutsize definition (2) as in the standard hypergraph model. In
other words, the sense of direction is not important for the total communica-
tion volume totV . On the other hand, the directions of the flow is crucial while
minimizing maxSV and maxSRV .

To optimize its metrics, UMPa follows the multi-level approach. Instead of a
recursive bisection, it adopts a direct K-way partitioning. Given the hypergraph,
UMPa gradually coarses it, obtains an initial K-way partition for the coarsest
hypergraph, and projects it into the original one by uncoarsening and refinement
steps at each level.

3.2 Multi-level coarsening phase

In this phase, the original hypergraph is gradually coarsened in multiple levels
by clustering subsets of vertices at each level. There are two types of clustering
algorithms: matching-based ones and agglomerative ones. The matching-based
ones put at most two similar vertices in a cluster, whereas the agglomerative ones
allow any number of similar vertices. There are various similarity metrics—see
for example [1,9,19]. All these metrics are defined only on two adjacent vertices
(one of them can be a vertex cluster). Two vertices are adjacent if they share a
net and they can be in the same cluster if the are adjacent.

In this work, we use an agglomerative algorithm and the absorption clustering
metric using pins [1,10]. For this metric, the similarity between two adjacent
vertices u and v is ∑

n∈nets[u]∩nets[v]

c[n]
|pins[n]| − 1

This is also the default metric in PaToH [10], a well-known hypergraph parti-
tioner. In each level `, we start with a finer hypergraph H` and obtain a coarser
one H`+1. If VC ⊂ V` is a subset of vertices deemed to be clustered, we create
the cluster vertex u ∈ V`+1 where nets[u] = ∪v∈VC

nets[v]. We also update the
pin sets of the nets in nets[u] accordingly.

Since we need the direction, i.e., source vertex information for each net to
minimize maxSV and maxSRV , we always store the source vertex of a net
n ∈ N as the first pin in pins[n]. To maintain this information, when a cluster
vertex u is formed in the coarsening phase, we put u to the head of pins[n] for
each net n whose source vertex is in the cluster.

3.3 Initial partitioning phase

To obtain an initial partition for the coarsest hypergraph, we use PaToH [10],
which is proved to produce high quality partitions with respect to total com-
munication volume metric [9]. We execute PaToH ten times and get the best
partition according to the maxSV metric. We have several reasons to use Pa-
ToH. First, although our main objective is minimizing maxSV , since we also
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take totV into account, it is better to start with an initial partition having a
good total communication volume. Second, since totV is the sum of the send
volumes of all parts, as we observed in our preliminary experiments, minimizing
it may also be good for both maxSV and maxSRV . Also, as stated in [2], using
recursive bisection and FM-based improvement heuristics for partitioning the
coarsest hypergraph is favorable due to small net sizes and high vertex degrees.

3.4 K-way refinement of communication volume metrics

In an uncoarsening level, which corresponds to the `th coarsening level, we
project the partition Π`+1 obtained for H`+1 to H`. Then, we refine it by using
a novel K-way refinement heuristic which is described below.

Given a partition Π, let a vertex be a boundary vertex if it is in the pin set
of at least one cutnet. Let Λ(n, p) = |pins[n] ∩ Vp| be the number of pins of net
n in part p, and part[u] be the current part of u. The proposed heuristic runs in
multiple passes where in a pass it visits each boundary vertex u and either leaves
it in part[u], or moves it to another part according to some move selection policy.
Algorithm 1 shows a pass of the proposed refinement heuristic. For each visited
boundary vertex u and for each available part p other than part[u], the heuristic
computes how the communication metrics are affected when u is moved to p.
This is accomplished in three steps. First, u is removed from part[u], and the
leave gains on the send/receive volumes of the parts are computed (after line 1).
Second, u is put into a candidate part p and the arrival losses on the send/receive
volumes are computed (after line 2). Last, the maximum send, maximum send-
receive, and total volumes are computed for this move (after line 4).

Move selection policy and tie-breaking scheme. Our move selection policy
given in Algorithm 2 favors the moves with the maximum gains on maxSV and
never allows a move with negative gain on the same metric. To take other metrics
into account, we use a tie-breaking scheme which is enabled when two different
moves of a vertex u have the same maxSV gain. In this case, the move with
maxSRV gain is selected as the best move. If the gains on maxSRV are also
equal then the move with maximum gain on totV is selected. We do not allow
a vertex move without a positive gain on any of the communication metrics.
As the experimental results show, this move selection policy and tie-breaking
scheme have positive impact on all the metrics.

Figure 1 shows a sample graph with 8 vertices and 13 edges partitioned into
3 parts. Assume that this is a partial illustration of boundary vertices, and any
move will not violate the balance criteria. Each row in the table contains a
possible vertex move and the changes on the communication volume metrics. In
the initial configuration, maxSV = 6, maxSRV = 9, and totV = 12. If we move
v3 from the partition V2 to the partition V3, we reduce all metrics by 1. On the
other hand, if we move v3 to V1, we decrease maxSV and maxSRV , but totV
does not change. In this case, since its gain on totV is better, the tie-breaking
scheme favors the move v3 to V3. Moreover, the moves v4 to V1, v6 to V3 and v7
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Algorithm 1: A pass for K-way refinement
Data: H = (V,N ), boundary[], part[], SV[], RV[],λ, Λ
for each unlocked u ∈ boundary do

receiveGain← 0
uToPartU ← 0
sendGain[]← 0

1 for each n ∈ nets[u] do
if s(n) = u then

sendGain[part[u]]← sendGain[part[u]] + (λn − 1)c[n]
if Λ(n, part[u]) > 1 then

receiveGain← receiveGain− c[n]
uToPartU ← uToPartU + c[n]

else if Λ(n, part[u]) = 1 then
sendGain[part[s(n)]]← sendGain[part[s(n)]] + c[n]
receiveGain← receiveGain + c[n]

(bestMaxSV, bestMaxSRV, bestTotV )← (maxSV, maxSRV, totV )
bestPart← part[u]
for each part p other than part[u] do

if p has enough space for vertex u then
receiveLoss← 0
sendLoss[]← 0

2 sendLoss[p]← sendGain[part[u]] + uToPartU
3 for each n ∈ nets[u] do

if s(n) = u then
if Λ(n, p) > 0 then

sendLoss[p]← sendLoss[p]− c[n]
receiveLoss← receiveLoss− c[n]

else if Λ(n, p) = 0 then
sendLoss[part[s(n)]]← sendLoss[part[s(n)]] + c[n]
receiveLoss← receiveLoss + c[n]

4 (moveSV, moveSRV )← (−∞,−∞)
5 for each part q do

∆S ← sendLoss[q]− sendGain[q]
∆R ← 0
if q = part[u] then

∆R ← receiveGain

else if q = p then
∆R ← receiveLoss

moveSV ← max(moveSV, SV[q] + ∆S)
moveSRV ← max(moveSRV, SV[q] + ∆S + RV[q] + ∆R)

moveV ← totV + receiveLoss− receiveGain
6 MoveSelect(moveSV, moveSRV, moveV, p,

bestMaxSV, bestMaxSRV, bestTotV, bestPart)

if bestPart 6= part[u] then
move u to bestPart and update data structures accordingly
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Algorithm 2: MoveSelect

Data: moveSV, moveSRV, moveV, p,
bestMaxSV, bestMaxSRV, bestTotV, bestPart

select← 0
if moveSV < bestMaxSV then

select← 1 .Main objective

1 else if moveSV = bestMaxSV then
if moveSRV < bestMaxSRV then

select← 1 .First tie break

2 else if moveSV = bestMaxSV then
if moveSRV = bestMaxSRV then

if moveV < bestTotV then
select← 1 .Second tie break

if select = 1 then
bestMaxSV ← moveSV
bestMaxSRV ← moveSRV
bestTotV ← moveV
bestPart← p

V1

v1

v2

v3

v4

v6
v5

v8

v7

V2

V3

Vertex Part maxSV maxSRV totV

v1 V1 −1 +1 −2
v1 V2 −2 −2 −3
v2 V2 0 −1 −1
v2 V3 −1 +1 0
v3 V1 −1 −1 0
v3 V3 −1 −1 −1
v4 V1 −1 −1 0
v4 V3 −1 +1 +1
v5 V3 0 0 −1
v6 V1 −1 0 +1
v6 V3 −1 0 0
v7 V1 −1 +1 0
v7 V3 −1 −1 0

v5 V2 +2 +2 −1
v8 V1 0 0 0
v8 V2 +2 +2 +1

Fig. 1. A sample partitioning and some potential moves with their effects on the
communication volume metrics. The initial values are maxSV = 6, maxSRV = 9 and
totV = 12. A negative value in a column indicates a reduction on the corresponding
metric.
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to V3 are other move examples where tie-breaking scheme is used. Note that we
allow all the moves in the first 13 rows of the table including these two. However,
we do not allow the ones in the last three rows.

Implementation details. During the gain computations, the heuristic uses
the connectivity information between nets and parts stored in data structures λ
and Λ. These structures are constructed after the initial partitioning phase, and
then maintained by the uncoarsening phase. Since the connectivity information
changes after each vertex move, when a vertex u is moved, we visit the nets of
u and update the data structures accordingly. Also, when new vertices become
boundary vertices, they are inserted to boundary array and visited in the same
pass.

If at least one move with a positive gain on maxSV is realized in a refinement
pass, the heuristic continues with the next pass. Otherwise, it stops. For efficiency
purposes, throughout the execution of a pass, we restrict the number of moves
for each vertex u. If this number is reached, we lock the vertex and remove it
from the boundary. In our experiments, the maximum number of moves per
vertex is 4.

Let ρ =
∑

n∈N |pins[n]| be the number of pins in a hypergraph. The time
complexity of a pass of the proposed refinement heuristic is O(ρK + |V|K2) due
to the gain computation loops at lines 3 and 5. To store the numbers of pins per
part for each net, Λ, we use a 2-dimensional array. Hence, the space complexity
is O(K|N |). This can be improved as shown in [2].

4 Experimental results

UMPa is tested on a computer with 2.27GHz dual quad-core Intel Xeon CPUs
and 48GB main memory. It is implemented in C++ and compiled with g++
version 4.5.2.

To obtain our data set, we used several graphs from the testbed of 10th
DIMACS implementation challenge [13]. We remove relatively small graphs con-
taining less than 104 vertices, and also extremely large ones. There are 123
graphs in our data set from 10 graph classes. The names and the details of
these graphs are given in http://bmi.osu.edu/∼kamer/dimacs graphs.txt.
For each graph, we execute UMPa and other algorithms 10 times. The results
in the tables are the averages of these 10 executions.

To see the effect of UMPa’s K-way partitioning structure and its tie-breaking
scheme, we compare it with two different refinement approaches and PaToH.
The first approach is partitioning the hypergraph into K with PaToH’s recur-
sive bisection scheme and refining it by using the proposed K-way refinement
algorithm without employing the tie-breaking scheme. The second approach is
using UMPa but again without tie breaking. To remove tie breaking, we remove
the else statements at lines labeled with 1 and 2 of Algorithm 2.

Table 1 gives the average performance of all these approaches normalized
with respect to PaToH’s performance. Without tie breaking, refining PaToH’s
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Table 1. The relative performance of UMPa and PaToH+refinement without tie break-
ing. The performance are computed with respect to that of PaToH.

PaToH + Refinement UMPa UMPa
No tie breaking No tie breaking With tie breaking

K maxSV maxSRV totV maxSV maxSRV totV maxSV maxSRV totV

4 0.93 1.05 1.06 0.73 0.83 0.93 0.66 0.77 0.84
16 0.93 1.06 1.04 0.84 0.94 1.11 0.73 0.83 0.98
64 0.91 1.04 1.02 0.86 0.98 1.12 0.76 0.87 1.00
256 0.91 1.03 1.01 0.89 1.00 1.10 0.81 0.91 1.02

Avg. 0.92 1.05 1.03 0.83 0.93 1.06 0.74 0.84 0.96

output reduces the maximum send volume by 8%. However, it increases the
maximum send-receive and total volumes by 5% and 3%, respectively. Hence,
we do not suggest using the refinement heuristic alone and without tie breaking.
On the other hand, if it is used in the multi-level structure of UMPa, we obtain
better results even without a tie-breaking scheme.

Table 1 shows that UMPa’s multi-level structure helps to obtain 17% and 7%
less volumes than PaToH’s partitions in terms of maxSV and maxSRV , respec-
tively. But since PaToH minimizes the total communication volume, there is a
6% overhead on the totV . Considering 17% reduction on maxSV , this overhead
is acceptable. However, we can still reduce all the communication metrics 9%-
to-10% more by employing the proposed tie-breaking scheme. For K = 4, this
leads us a 34% better maximum send volume, which is impressive since even the
total communication volume is 16% less compared with PaToH. Actually, for all
K values, UMPa manages to reduce maxSV and maxSRV on the average. The
percent of improvement reduces with the increasing K. This may be expected
since when K is large, the total volume will be distributed into more parts, and
the maximum send or send-receive volume will be less. Still, on the average, the
reductions on maxSV , maxSRV , and totV are 26%, 16%, and 4%, respectively.

Tables 2 and 3 show performance of PaToH and UMPa in terms of the
communication metrics and time. There are 20 graphs in each table selected
from 10 graph class in DIMACS testbed. For each graph class, we select the two
(displayed consecutively in the tables) for which UMPa obtains the best and
worst improvements on maxSV . The numbers given in the tables are averages
of 10 different executions. For all experiments with K = 16 parts, as Table 2
shows, UMPa obtains a better maxSV value than PaToH on the average. When
K = 4, 64, and 256, PaToH obtains a better average maxSV only for 16, 4, and
1 graphs, out of 123, respectively.

There are some instances in the tables for which UMPa improves maxSV
significantly. For example, for graph ut2010 in Table 2, the maxSV value is
reduced from 1506 to 330 with approximately 78% improvement. Furthermore,
for the same graph, the improvements on maxSRV and totV are 75% and 67%,
respectively. When K = 256 (Table 3) for the graph memplus, UMPa obtains
approximately 50% improvement on maxSV and maxSRV . Although totV in-
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Table 2. The maximum send and send-receive volumes, and the total volume for
PaToH and UMPa when K = 16. The times are given in seconds. There are 20 graphs
in the table where two graphs with the best and the worst improvements on maxSV
are selected from each class. Each number is the average of 10 different executions.

PaToH UMPa
Graph maxSV maxSRV totV Time maxSV maxSRV totV Time

coPapersDBLP 62,174 139,600 673,302 91.45 53,619 117,907 842,954 145.47
as-22july06 1,506 5,063 12,956 0.63 1,144 3,986 13,162 2.70
road central 500 999 3,926 112.64 279 576 2,810 27.85
smallworld 12,043 24,020 188,269 3.09 10,920 21,844 174,645 19.27
delaunay n14 119 235 1,500 0.19 115 236 1,529 0.88
delaunay n17 351 706 4,100 1.09 322 655 4,237 2.54
hugetrace-00010 2,113 4,225 25,809 93.99 2,070 4,144 28,572 43.39
hugetric-00020 1,660 3,320 20,479 60.96 1,601 3,202 22,019 29.51
venturiLevel3 1,774 3,548 19,020 27.41 1,640 3,282 20,394 16.01
adaptive 2,483 4,967 27,715 54.00 2,345 4,692 29,444 29.33
rgg n 2 15 s0 146 293 1,519 0.34 119 254 1,492 1.03
rgg n 2 21 s0 1,697 3,387 19,627 37.86 1,560 3,215 20,220 16.66
tn2010 2,010 3,666 13,473 1.26 1,684 3,895 56,780 1.54
ut2010 1,506 2,673 3,977 0.43 330 677 1,303 0.82
af shell9 1,643 3,287 17,306 14.83 1,621 3,242 18,430 8.64
audikw1 15,119 29,280 145,976 161.23 11,900 24,182 159,640 77.16
asia.osm 63 125 409 40.43 30 62 323 7.67
belgium.osm 141 281 1,420 4.80 120.6 243 1,406 1.96
memplus 986 7,138 7,958 0.23 686 3,726 10,082 0.72
t60k 155 310 1,792 0.29 148.5 297 1,890 0.99
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Table 3. The maximum send and send-receive volumes, and the total volume for
PaToH and UMPa when K = 256. The times are given in seconds. There are 20 graphs
in the table where two graphs with the best and the worst improvements on maxSV
are selected from each class. Each number is the average of 10 different executions.

PaToH UMPa
Graph maxSV maxSRV totV Time maxSV maxSRV totV Time

coPapersCiteseer 7,854 16,765 577,278 224.09 5,448 11,615 579,979 658.21
coPapersDBLP 14,568 34,381 1,410,966 143.97 10,629 23,740 1,371,425 1038.86
as-22july06 1,555 7,128 28,246 1.01 617 4,543 33,347 12.62
smallworld 1,045 2,078 232,255 4.55 877 1,751 208,860 36.24
delaunay n20 301 600 57,089 17.98 279 566 58,454 68.85
delaunay n21 420 844 80,603 35.01 398 813 83,234 107.35
hugetrace-00000 407 814 74,563 55.51 415 831 80,176 123.66
hugetric-00010 502 1,004 91,318 92.45 477 955 97,263 167.69
adaptive 753 1,505 143,856 96.60 735 1,472 152,859 224.30
venturiLevel3 568 1,137 107,920 49.97 564 1,132 114,119 132.02
rgg n 2 22 s0 799 1,589 145,902 151.30 724 1,495 147,331 249.23
rgg n 2 23 s0 1,232 2,432 219,404 347.32 1,062 2,168 221,454 446.78
ri2010 3206 5,989 281,638 0.72 2,777 5,782 279,941 8.66
tx2010 5,139 9,230 124,033 8.47 3,011 7,534 117,960 15.55
af shell10 898 1,792 174,624 89.90 885 1,769 184,330 158.04
audikw1 4,318 8,299 680,590 322.57 3,865 7,607 692,714 822.73
asia.osm 72 146 4,535 72.37 66 135 4,484 18.79
great-britain.osm 104 209 11,829 50.52 82 168 11,797 25.51
finan512 199 420 36,023 2.75 192 437 36,827 27.70
memplus 1,860 7,982 15,785 0.49 946 4,318 19,945 8.25
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creases 26% at the same time, this is acceptable considering the improvements
on the first two metrics.

Table 4. The relative performance of UMPa with respect to PaToH in terms of exe-
cution time. The numbers are computed by using the results of 10 executions for each
of the 123 graphs in our data set.

K 4 16 64 256 Avg.

Relative time 1.02 1.29 2.01 5.76 1.98

Table 4 shows the relative performance of UMPa in terms of execution time
with respect to PaToH. As expected, due to the complexity of K-way refinement
heuristic, UMPa is slower than PaToH especially when the number of parts is
large.

5 Conclusions and future work

We proposed a directed hypergraph model and a multi-level partitioner UMPa
for obtaining good partitions in terms of multiple communication metrics where
the maximum amount of data sent by a processing unit is the main objective
function to be minimized. UMPa uses a novel K-way refinement heuristic em-
ploying a tie-breaking scheme to handle multiple communication metrics. We
obtain significant improvements on a large number of graphs for all K values.

We are planning to speed up UMPa and the proposed refinement approach
by implementing them on modern parallel architectures. We are also planning
to investigate partitioning for hierarchical memory systems, such as cluster of
multi-socket, multi-core machines with accelerators.

Acknowledgment

This work was supported in parts by the DOE grant DE-FC02-06ER2775 and
by the NSF grants CNS-0643969, OCI-0904809, and OCI-0904802.

References

1. Alpert, C.J., Kahng, A.B.: Recent directions in netlist partitioning: A survey. VLSI
Journal 19(1–2), 1–81 (1995)
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9. Çatalyürek, Ü.V., Aykanat, C.: Hypergraph-partitioning based decomposition for
parallel sparse-matrix vector multiplication. IEEE Transactions on Parallel and
Distributed Systems 10(7), 673–693 (1999)
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